Model 2001 Specifications

The following pages contain the complete specifications for the 2001. Every effort has been made to make these specifications complete by characterizing its performance under the variety of conditions often encountered in production, engineering and research.

The 2001 provides 5-minute, 1-hour, 24-hour, 90-day, 1-year, and 2-year specifications, with full specifications for the 90-day, 1-year and 2-year specifications. This allows the user to utilize 90-day, 1-year, or 2-year recommended calibration intervals, depending upon the level of accuracy desired. As a general rule, the 2001's 2-year performance exceeds a $5^{1}/_{2}$ -digit DMM's 90-day, 180-day or 1-year specifications. $6^{1}/_{2}$ - or $7^{1}/_{2}$ -digit performance is assured using 90-day or 1-year specifications.

ABSOLUTE ACCURACY

To minimize confusion, all 90-day, 1-year and 2-year 2001 specifications are absolute accuracy, traceable to NIST based on factory calibration. Higher accuracies are possible, based on your calibration sources. For example, calibrating with a 10V primary standard rather than a 20V calibrator will reduce calibration uncertainty, and can thereby improve total 2001 accuracy for measurements up to 50% of range. Refer to the 2001 calibration procedure for details.

TYPICAL ACCURACIES

Accuracy can be specified as typical or warranted. All specifications shown are warranted unless specifically noted. Almost 99% of the 2001's specifications are warranted specifications. In some cases it is not possible to obtain sources to maintain traceability on the performance of every unit in production on some measurements (e.g., high-voltage, high-frequency signal sources with sufficient accuracy do not exist). Since these values cannot be verified in production, the values are listed as typical.

2001 SPECIFIED CALIBRATION INTERVALS

MEASUREMENT FUNCTION	24 HOUR ¹	90 DAY ²	1 YEAR ²	2 YEAR ²
DC Volts	•	• 3	•	•
DC Volts Peak Spikes		• 3	•	•
AC Volts rms		• 3	•	•
AC Volts Peak		• 3	•	•
AC Volts Average		• 3	•	•
AC Volts Crest Factor		• 3	•	•
Ohms	•	•	•	•
DC Current	•	•	•	•
DC In-Circuit Current		•	•	•
AC Current		• 3	•	•
Frequency		•	•	•
Temperature (Thermocouple)		•	•	•
Temperature (RTD)		•	•	•

¹ For TCAL ±1°C.

² For Tcal ±5°C.

³ For ±2°C of last AC self cal.

DCV INPUT CHARACTERISTICS AND ACCURACY

RANGE	FULL SCALE	RESO- LUTION	DEFAULT RESO- LUTION	INPUT RESISTANCE	± 5 Minutes ¹²	AC ppm of read 24 Hours ²		of range) 1 Year³	2 Years³	TEMPERATURE COEFFICIENT ±(ppm of reading + ppm of range)/°C Outside Tcal ±5°C
200 mV 4	±210.00000	10 nV	100 nV	>10 GΩ	3 + 3	10 + 6	25 + 6	37 + 6	50 + 6	3.3 +1.5
2 V	±2.1000000	100 nV	1 μV	>10 GΩ	2 + 1.5	7 + 2	18 + 2	25 + 2	32 + 2	2.6 + 0.15
20 V	±21.000000	1 μV	10 μV	>10 GΩ	2 + 1.5	7 + 4	18 + 4	24 + 4	32 + 4	2.6 + 0.7
200 V	±210.00000	10 μV	100 μV	10 MΩ ±1%	2 + 1.5	13 + 3	27 + 3	38 + 3	52 + 3	4.3 +1
1000 V	±1100.0000	100 μV	1 mV	10 MΩ ±1%	10 + 1.5	17 + 6	31 + 6	41 + 6	55 + 6	4.1 +1

DC VOLTAGE UNCERTAINTY = ±[(ppm of reading) × (measured value) + (ppm of range) × (range used)] / 1,000,000.

% ACCURACY = (ppm accuracy) /10,000.

1PPM OF RANGE = 2 counts for ranges up to 200V, 1 count on 1000V range at 61/2 digits.

SPEED) ANI	D ACCURACY	⁵ 90 Days		
			ACCU	IRACY	
		±(ppm of readi	ing+ppm of rar	nge+ppm of ran	ge rms noise10)
RAN	GE	1PLC DFILT On, 10 Readings	1PLC DFILT Off	0.1PLC DFILT Off	0.01PLC ¹¹ DFILT Off
200 1	nV 4	25+6+0	25+6+0.6	25+30+10	100+200+15
2	V	18+2+0	18+2+0.2	18+25+1	130+200+3
20	V	18+4+0	18+4+0.3	18+20+0.5	130+200+3
200	V	27+3+0	27+5+0.3	27+20+0.8	130+200+3
1000	V	31+6+0	31+6+0.1	31+21+0.5	90+200+2

PLC = power line cycle; DFILT = digital filter

NOISE REIECTION (dB)

,					
SPEED	AC and D	C CMRR ⁶		AC NMRR	
(Number of Power Line Cycles)	Line Sync On ⁷		Line Sync On ⁷ 25-Reading DFILT On	On ⁷	Trigger ⁸
$ NPLC = 10 \\ NPLC \ge 1 \\ NPLC < 1 $	140 140 60	120 120 50	90 90 30	80 80 20	60 60 0

Effective noise is reduced by a factor of 10 for every 20dB of noise rejection (140dB reduces effective noise by 10,000,000:1).

CMRR is rejection of undesirable AC or DC signal between LO and earth. NMRR is rejection of undesirable AC signal between HI and LO.

DCV READING RATES^{9,10}

200mV, 2V, 200V Ranges

												READ	DINGS/S	ECOND	WITH
	MEASUREMENT	1	DEFAULT	READIN	GS/SECC	ND TO	MEMORY	READIN	GS/SECO	OND TO	IEEE-488	TIME	STAME	TO IEI	E-488
NPLC	APERTURE	BITS	DIGITS	Auto 2	Zero Off	Auto Z	ero On	Auto 2	Zero Off	Auto 2	Zero On	Auto 2	Zero Of	Auto Z	ero On
10	167 ms (200 ms)	28	71/2	6	(5.1)	2	(1.7)	6		2	(1.6)	6	(4.1)	2	(1.6)
2	33.4 ms (40 ms)	26	71/2	30	(25)	9	(7.6)	28	(23)	9	(7.3)	27	(22)	8	(7.2)
1	16.7 ms (20 ms)	25	61/2	58	(48)	44	(34)	54	(45)	41	(32)	49	(41)	37	(30)
0.2	3.34 ms (4 ms)	22	61/2	214	(186)	127	(112)	183	(162)	104	(101)	140	(126)	88	(85)
0.1	1.67 ms (2 ms)	21	51/2	272	(272)	150	(148)	228	(225)	129	(123)	156	(153)	100	(96)
0.02	334 µs (400 µs)	19	$5^{1/2}$	284	(287)	156	(155)	230	(230)	136	(134)	158	(156)	104	(103)
0.01	167 μs (167 μs)	16	41/2	417	(417)	157	(157)	317	(317)	137	(134)	198	(198)	105	(103)
0.01^{11}	167 μs (167 μs)	16	41/2	2000	(2000)			2000	(2000)						
20V, 100	0V Ranges														
10	167 ms (200 ms)	28	71/2	6	(5.1)	2	(1.7)	6		2	(1.6)	6		2	(1.6)
2	33.4 ms (40 ms)	26	71/2	30	(25)	9	(8.2)	28	(23)	9	(7.8)	27	(22)	9	(7.7)
1	16.7 ms (20 ms)	25	$6^{1/2}$	57	(48)	42	(38)	54	(45)	43	(35)	48	(41)	39	(32)
0.2	3.34 ms (4 ms)	22	$6\frac{1}{2}$	201	(186)	102	(113)	173	(162)	102	(99)	129	(127)	84	(83)
0.1	1.67 ms (2 ms)	21	$5\frac{1}{2}$	201	(201)	126	(116)	175	(173)	105	(105)	129	(128)	86	(86)
0.02	334 μs (400 μs)	19	$5^{1/2}$	227	(227)	129	(129)	178	(178)	114	(114)	138	(138)	90	(90)
0.01	167 µs (167 µs)	16	41/2	422	(422)	130	(130)	333	(333)	117	(117)	199	(199)	95	(95)
0.01^{11}	167 us (167 us)	16	41/2	2000	(2000)			2000	(2000)						

SETTLING CHARACTERISTICS: <500µs to 10ppm of step size. Reading settling times are affected by source impedance and cable dielectric absorption characteristics. Add 10ppm of range for first reading after range change.

ZERO STABILITY: Typical variation in zero reading, 1 hour, Tref ±1°C, 6½-digit default resolution, 10-reading digital filter:

ZERO STABILITY

Range 1 Power Line Cycle Integration 10 Power Line Cycle Integration

 $\begin{array}{cccc} 2V-1000V & \pm 3 \ counts & \pm 2 \ counts \\ 200 \ mV & \pm 5 \ counts & \pm 3 \ counts \end{array}$

ISOLATED POLARITY REVERSAL ERROR: This is the portion of the instrument error that is seen when high and low are reversed when driven by an isolated source. This is not an additional error—it is included in the overall instrument accuracy spec. Reversal Error: <2 counts at 10V input at 6½ digits, 10 power line cycles, 10-reading digital filter.

INPUT BIAS CURRENT: <100pA at 25°C.

 $\label{linearity:linear} \textbf{LINEARITY:} < 1 ppm \ of \ range \ typical, < 2 ppm \ maximum.$

AUTORANGING: Autoranges up at 105% of range, down at 10% of range.

DC VOLTS NOTES

- Specifications are for 1 power line cycle, Auto Zero on, 10-reading digital filter, except as noted.
- 2. For $T_{CAL}\pm 1^{\circ}C$, following 55-minute warm-up. T_{CAL} is ambient temperature at calibration, which is $23^{\circ}C$ from factory.
- 3. For T_{CAL} $\pm 5^{\circ}C$, following 55-minute warm-up. Specifications include factory traceability to US NIST.
- 4. When properly zeroed using REL function.
- 5. For Tcal. ±5°C, 90-day accuracy. 1-year or 2-year accuracy can be found by applying the same speed accuracy ppm changes to the 1-year or 2-year base accuracy.
- 6. Applies for $1k\Omega$ imbalance in the LO lead. For 400Hz operation, subtract 10dB.
- 7. For noise synchronous to the line frequency.

- 8. For line frequency ±0.1%.
- See Operating Speed section for additional detail. For DELAY=0, internal trigger, digital filter off, display off (or display in "hold" mode). Aperture is reciprocal of line frequency. These rates are for 60Hz and (50Hz).
- 10. Typical values.
- 11. In burst mode, display off. Burst mode requires Auto Zero refresh (by changing resolution or measurement function) once every 24 hours.
- 12. DCV Transfer Stability typical applications are standard cell comparisons and relative accuracy measurements. Specs apply for 10 power line cycles, 20-reading digital filter, autozero on with type synchronous, fixed range following 2-hour warm-up at full scale to 10% of full scale, at There ± 1°C (There is the initial ambient temperature). Specifications on the 1000V range are for measurements within 5% of the initial measurement value and following measurement settling.

 HW 4/28/03

DCV PEAK SPIKES MEASUREMENT

REPETITIVE SPIK	ES ACCURA	CY ¹ 90 Da	ays, ±2°C fro	m last AC sel	f-cal ±(%	of reading+%	6 of range)			TEMPERATURE COEFFICIENT
RANGE	0−1kHz⁴	1kHz- 10kHz	10kHz- 30kHz	30kHz- 50kHz	50kHz- 100kHz	100kHz- 300kHz	300kHz- 500kHz	500kHz- 750kHz	750kHz- 1MHz	
200 mV	0.08+0.7	0.08+0.7	0.1 + 0.7	0.15+0.7	0.25+0.7	1.0+0.7	2.5 + 0.7	5.5 + 0.7	9+0.7	0.002+0.03
2 V	0.08+0.3	0.08 + 0.3	0.1 + 0.3	0.15+0.3	0.25+0.3	1.0+0.3	2.5+0.3	5.5+0.3	9+0.3	0.002+0.03
20 V	0.09+0.7	0.1 + 0.7	0.12+0.7	0.17 + 0.7	0.25+0.7	1.0+0.7	2.5+0.7	5.5+0.7	9+0.7	0.004+0.03
200 V ³	0.09+0.3	0.1 + 0.3	0.12+0.3	0.17+0.3	0.25+0.3	$1.0+0.3^{2}$	$2.5+0.3^{2}$	$5.5+0.3^{2}$	$9+0.3^{2}$	0.004+0.03
1000 V ³	0.1 + 0.6	0.13+0.6	0.16+0.6	$0.25 + 0.6^{2}$	$0.5 + 0.6^{2}$					0.01 + 0.02
Max. % of Range	e ±125%	±125%	±125%	±125%	±125%	±125%	±125%	±100%	±75%	
REPETITIVE SPIK	KES ACCURA	CY ¹ 1 or 1	2 Years, TCAL	±5°C ±(°	% of reading-	⊦% of range)				TEMPERATURE COEFFICIENT
REPETITIVE SPIK	(ES ACCURA 0-1kHz4	CY¹ 1 or : 1kHz- 10kHz	2 Years, T _{CAL} 10kHz- 30kHz	±5°C ±(° 30kHz- 50kHz	% of reading- 50kHz- 100kHz	+% of range) 100kHz- 300kHz	300kHz- 500kHz	500kHz- 750kHz	750kHz- 1MHz	
		1kHz-	10kHz-	30kHz-	50kHz-	100kHz-	300kHz-			±(% of reading+% of range)/°C
RANGE	0-1kHz ⁴	1kHz- 10kHz	10kHz- 30kHz	30kHz- 50kHz	50kHz- 100kHz	100kHz- 300kHz	300kHz- 500kHz	750kHz	1MHz	±(% of reading+% of range)/°C Outside TCAL ±5°C
RANGE 200 mV	0-1kHz ⁴ 0.08+0.7	1kHz- 10kHz 0.09+0.7	10kHz- 30kHz 0.1 +0.7	30kHz- 50kHz 0.15+0.7	50kHz- 100kHz 0.25+0.7	100kHz- 300kHz 1.0+0.7	300kHz- 500kHz 2.5+0.7	750kHz 5.5+0.7	1MHz 9+0.7	±(% of reading+% of range)/°C Outside Tcal ±5°C 0.002+0.03
RANGE 200 mV 2 V	0-1kHz ⁴ 0.08+0.7 0.08+0.3	1kHz- 10kHz 0.09+0.7 0.09+0.3	10kHz- 30kHz 0.1 +0.7 0.1 +0.3	30kHz- 50kHz 0.15+0.7 0.15+0.3	50kHz- 100kHz 0.25+0.7 0.25+0.3	100kHz- 300kHz 1.0+0.7 1.0+0.3	300kHz- 500kHz 2.5+0.7 2.5+0.3	750kHz 5.5+0.7 5.5+0.3	1MHz 9+0.7 9+0.3	±(% of reading+% of range)/°C Outside T _{CAL} ±5°C 0.002+0.03 0.002+0.03
RANGE 200 mV 2 V 20 V	0-1kHz ⁴ 0.08+0.7 0.08+0.3 0.1 +0.7	1kHz- 10kHz 0.09+0.7 0.09+0.3 0.11+0.7	10kHz- 30kHz 0.1 +0.7 0.1 +0.3 0.14+0.7	30kHz- 50kHz 0.15+0.7 0.15+0.3 0.19+0.7	50kHz- 100kHz 0.25+0.7 0.25+0.3 0.25+0.7	100kHz- 300kHz 1.0+0.7 1.0+0.3 1.0+0.7	300kHz- 500kHz 2.5+0.7 2.5+0.3 2.5+0.7	750kHz 5.5+0.7 5.5+0.3 5.5+0.7	9+0.7 9+0.3 9+0.7	±(% of reading+% of range)/°C Outside T _{CAL} ±5°C 0.002+0.03 0.002+0.03 0.004+0.03

DEFAULT MEASUREMENT RESOLUTION: 31/2 digits.

MAXIMUM INPUT: $\pm 1100V$ peak value, $2\times 10^7 V\, {}^{\bullet}\text{Hz}$ (for inputs above 20V).

NON-REPETITIVE SPIKES: 10% of range per μs typical slew rate.

SPIKE WIDTH: Specifications apply for spikes $\ge 1 \mu s$.

 $\mbox{{\bf RANGE CONTROL:}}$ In Multiple Display mode, voltage range is the same as DCV range.

SPIKES MEASUREMENT WINDOW: Default is 100ms per reading (settable from 0.1 to 9.9s in Primary Display mode).

INPUT CHARACTERISTICS: Same as ACV input characteristics.

SPIKES DISPLAY: Access as multiple display on DC Volts. First option presents positive peak spikes and highest spike since reset. Second option presents negative spikes and lowest spike. Highest and lowest spike can be reset by pressing DCV function button. Third option displays the maximum and minimum levels of the input signal. Spikes displays are also available through CONFIG-ACV-ACTYPE as primary displays.

DCV PEAK SPIKES NOTES

- 1. Specifications apply for 10-reading digital filter. If no filter is used, add 0.25% of range typical uncertainty.
- 2. Typical values.
- 3. Add 0.001% of reading \times (V_{IN}/100V)² additional uncertainty for inputs above 100V.
- $4.\,Specifications$ assume AC+DC coupling for frequencies below 200Hz. Below 20Hz add 0.1% of reading additional uncertainty.

AC VOLTS

AC magnitude: RMS or Average. Peak and Crest Factor measurements also available.

ACV INPUT CHARACTERISTICS

RMS RANGE	PEAK INPUT	FULL SCALE RMS	RESOLUTION	DEFAULT RESOLUTION	INPUT IMPEDANCE	TEMPERATURE COEFFICIENT ² ±(% of reading + % of range) / °C Outside Tcal ±5°C
200 mV	1 V	210.0000	100 nV	1 μV	$1M\Omega$ ±2% with <140pF	0.004 + 0.001
2 V	8V	2.100000	1 μV	10 μV	$1M\Omega$ ±2% with <140pF	0.004 + 0.001
20 V	100 V	21.00000	10 μV	100 μV	$1M\Omega \pm 2\%$ with < 140 pF	0.006 + 0.001
200 V	800 V	210.0000	100 μV	1 mV	$1M\Omega$ ±2% with <140pF	0.006 + 0.001
750 V	1100 V	775.000	1 mV	10 mV	$1M\Omega$ ±2% with <140pF	0.012 + 0.001

AC VOLTAGE UNCERTAINTY = \pm [(% of reading) × (measured value) + (% of range) × (range used)] / 100.

PPM ACCURACY = $(\% \text{ accuracy}) \times 10,000.$

0.015% OF RANGE = 30 counts for ranges up to 200V and 113 counts on 750V range at $5\frac{1}{2}$ digits.

LOW FRE	QUENCY	MODE RMS ¹	90 Days,	±2°C from last	t AC self-cal, f	or 1% to 100%	6 of range ³	±(% of rea	ding + % of r	ange)	
RANGE	1-10Hz ⁵	10-50Hz	50-100Hz	0.1-2kHz	2-10kHz	10-30kHz	30-50kHz	50-100kHz	100-200kHz	0.2-1MHz	1–2MHz
200 mV	0.09+0.015	0.04+0.015	0.03+0.015	0.03+0.015	0.03+0.015	0.035+0.015	0.05+0.015	0.3+0.015	0.75+0.025	2+0.1	5+0.2
2 V	0.09+0.015	0.04 + 0.015	0.03+0.015	0.03 + 0.015	0.03+0.015	0.035 + 0.015	0.05+0.015	0.3 + 0.015	0.75 + 0.025	2+0.1	5+0.2
20 V	0.1 + 0.015	0.05 + 0.015	0.04+0.015	0.04 + 0.015	0.06 + 0.015	0.08 + 0.015	0.1 + 0.015	0.3 + 0.015	0.75 + 0.025	4+0.2	$7+0.2^{5}$
200 V ⁴	0.1 + 0.015	0.05 + 0.015	0.04+0.015	0.04+0.015	0.06+0.015	0.08 + 0.015	0.1 + 0.015	0.3+0.015	$0.75 + 0.025^{5}$	$4+0.2^{5}$	
750 V ⁴	0.13 + 0.015	0.09+0.015	0.08 + 0.015	0.08 + 0.015	0.09+0.015	0.12 + 0.015	$0.15 + 0.015^{5}$	$0.5 + 0.015^{5}$			
LOW FRE	QUENCY	MODE RMS ¹	1 or 2 Ye	ears, TCAL ±5°C	for 1% to 100)% of range ³	±(% of re	ading + % of	range)		
RANGE	1-10Hz ⁵	10-50Hz	50-100Hz	0.1-2kHz	2-10kHz	10-30kHz	30-50kHz	50-100kHz	100-200kHz	0.2-1MHz	1–2MHz
200 mV	0.11 + 0.015	0.06+0.015	0.05+0.015	0.05+0.015	0.05 +0.015	0.05+0.015	0.06+0.015	0.3+0.015	0.75+0.025	2+0.1	5+0.2
2 V	0.11 + 0.015	0.06+0.015	0.05+0.015	0.05+0.015	0.05 + 0.015	0.05+0.015	0.06+0.015	0.3+0.015	0.75 + 0.025	2+0.1	5+0.2
20 V	0.12+0.015	0.07 + 0.015	0.06 + 0.015	0.06 + 0.015	0.085 + 0.015	0.12 + 0.015	0.13 + 0.015	0.3+0.015	0.75 + 0.025	4+0.2	7+0.25
200 V ⁴	0.12 + 0.015	0.07 + 0.015	0.06+0.015	0.06+0.015	0.085 + 0.015	0.12 + 0.015	0.13 + 0.015	0.3+0.015	$0.75 + 0.025^{5}$	$4+0.2^{5}$	
750 V ⁴	0.15+0.015	0.11 + 0.015	0.1 + 0.015	0.1 + 0.015	0.13 + 0.015	0.18 + 0.015	$0.22 + 0.015^5$	$0.5 + 0.015^{5}$			

NORMAL /	MODE RM	S1 90 Da	vs +2°C from	last AC sol	f-cal for 1% +	o 100% of range	e ³ +(% of	reading + %	of range)		
RANGE	WODE KW	20-50Hz	50–100Hz	0.1–2kHz		•	30–50kHz	•	100-200kHz	0.2-1MHz	1-2MH:
200 mV		0.25+0.015	0.07+0.015	0.03+0.015				0.3+0.015	0.75+0.025	2+0.1	5+0.2
2 V		0.25+0.015	0.07 + 0.015	0.03+0.015	5 0.03+0.01	5 0.035+0.015	0.05+0.015	0.3+0.015	0.75 + 0.025	2+0.1	5+0.2
20 V		0.25+0.015	0.07+0.015	0.04+0.015				0.3+0.015	0.75+0.025	4+0.2	7+0.25
200 V ⁴ 750 V ⁴		0.25+0.015 0.25+0.015	0.07+0.015 0.1 +0.015	0.04+0.015 0.08+0.015				0.3+0.015 0.5+0.015 ⁵	0.75+0.0255	4+0.25	
NORMAL /	MODE RM	S ¹ 1 o	r 2 Years, Tca	AL ±5°C for 1	1% to 100% o	of range³ ±	(% of reading	+ % of range)			
RANGE		20-50Hz	50-100Hz	0.1-2kHz	2–10kHz	10-30kHz	30-50kHz	50-100kHz	100-200kHz	0.2-1MHz	1–2MHz
200 mV		0.25+0.015	0.08+0.015	0.05+0.015			0.06+0.015	0.3+0.015	0.75+0.025	2+0.1	5+0.2
2 V 20 V		0.25+0.015 0.25+0.015	0.08+0.015 0.08+0.015	0.05+0.015 0.06+0.015			0.06+0.015 0.13+0.015	0.3+0.015 0.3+0.015	0.75+0.025 0.75+0.025	2+0.1 4+0.2	5+0.2 7+0.2 ⁵
200 V ⁴		0.25+0.015	0.08+0.015	0.06+0.015			0.13+0.015	0.3+0.015	0.75+0.025	$4+0.2^{5}$	7+0.2
750 V ⁴		0.27+0.015	0.11+0.015	0.1 +0.015	5 0.13 +0.01	0.18+0.015	$0.22 + 0.015^{5}$	0.5+0.0155			
dB ACCUR	ACY RMS	±dB, 9	0 Days, 1 or	2 Years, To	AL ±5°C, Refer	ence=1V, Autora	nnging, Low Fre	quency Mode,	AC+DC Coup	oling	
	INPUT		1–100Hz	0.1	-30kHz	30-100kHz	100-200	kHz 0	.2–1MHz	1-2MH	lz
-54 to-40	,	to 10 mV)	0.230		0.225	0.236	0.355				
-40 to-34 -34 to 6	•		0.036 0.023		0.031 0.018	0.041 0.028	0.088 0.066		0.265	0.630	
6 to 26			0.024		0.024	0.028	0.066		0.538	0.820	
26 to 46		to 200 V)	0.024		0.024	0.028	0.066	5	0.538^{5}		
46 to 57.8	3 dB (200 V	to 775 V)	0.018	(0.021	0.049^{5}					
ACV READ	ING RATE	S ^{5,6}									
	MEASUREME	NIT	DEFAULT	DEADINGS/6	SECOND TO A	MEMODY DEA	DINGS/SECON	D TO IEEE 40		GS/SECOND AMP TO IEI	
NPLC	APERTURI				Off Auto Ze		uto Zero Off			Off Auto Z	
10	167 ms (200	ms) 28	$6^{1/2}$	6 (5.1	1) 2	(1.7)	2	2 (1.6)	2	2	(1.5)
	33.4 ms (40		51/2	30 (24		(7.9)	28 (23)	9 (7.6)			(7.5)
	16.7 ms (20 1.67 ms (2	ms) 25 ms) 21	$\frac{51/2}{51/2}$	57 (48 136 (136		(35) (70)	53 (45) 122 (122)	36 (33) 64 (64)		(1) 34 (8) 56	(30) (56)
	167 μs (167		41/2	140 (140			127 (127)	66 (66)		19) 58	(58)
0.018	167 μs (167	μs) 16	41/2	2000 (2000	0)	2	000 (2000)				
AC COUPL			_	_	_		ST FACTOR		MENT ¹¹		
Normal Mode		Hz 10–20Hz	20-50Hz	50–100Hz 1	00-200Hz		OR = Peak AC /				
(rms, averag		_	0.41	0.07	0.015		OR RESOLUTIO OR ACCURACY:	_	certainty + A	.C normal n	node rm:
Low Frequency		0.01	0	0	0	uncertair		i i cuii i ic ui	.coreality . 11		1000 1111
(rms) For low freque	0.1 oncy mode bel		0 cifications and	0 nly for sine v	0 vave innuts		NT TIME: 100m ACTERISTICS: S	•		me.	
only.	mode be	ow woorns, spe	emederono ap	pr) 101 51110 V	rave inputs		OR FREQUENCY		•		
AC+DC CO	UPLING: F	or DC>20% of	AC rms volta	age, annly th	o following					4.0 1.	
additional	l uncertainty,	multiplied by				CREST FACTO	OR DISPLAY: Ac	cess as multi _l	ole display on	AC volts.	
additional and avera		multiplied by	the ratio (DC/			CREST FACTO	OR DISPLAY: Ac	cess as multij	ole display on	AC volts.	
additional and avera R. 2001	l uncertainty, ge measurem ANGE mV, 20V	multiplied by ents. % of Read 0.05	the ratio (DC/	AC rms). Apply of Range		CREST FACTO	OR DISPLAY: Ac	cess as multij	ole display on	AC volts.	
additional and averag R 2009 2V, 20	l uncertainty, ge measurem ANGE mV, 20V 00V, 750V	multiplied by lents. % of Read 0.05 0.07	the ratio (DC/	AC rms). Apple of Range				·			eading
additional and average R. 2000 2V, 20 AVERAGE	uncertainty, ge measurem ANGE mV, 20V 00V, 750V ACV MEA	multiplied by ents. % of Read 0.05 0.07 SUREMENT	the ratio (DC/	AC rms). App % of Range 0.1 0.01	plies to rms	HIGH CRE	ST FACTOR	ADDITION			eading
additional and average R 2000 2V, 20 AVERAGE Normal mode	uncertainty, ge measurem ANGE mV, 20V 00V, 750V ACV MEA rms specifica	multiplied by tents. % of Read 0.05 0.07 SUREMENT	ing Good on 10% to 10	AC rms). App % of Range 0.1 0.01	plies to rms	HIGH CRE	EST FACTOR	ADDITION	NAL ERROR	±(% of r	Ü
additional and average R. 2000 2V, 20 AVERAGE Normal mode 1MHz. Add 0.	uncertainty, ge measurem ANGE mV, 20V 00V, 750V ACV MEA rms specifica 025% of rang	multiplied by tents. % of Read 0.05 0.07 SUREMENT ations apply fre for 50kHz-1	ing Granting (DC/	AC rms). App % of Range 0.1 0.01	plies to rms	HIGH CRE	EST FACTOR ns measuremen OR:	ADDITION	NAL ERROR 2 - 3 3	±(% of r	eading
additional and average R 2000 2V, 20 AVERAGE Normal mode 1MHz. Add 0. 200kHz, and 0	uncertainty, ge measurem ANGE mV, 20V 00V, 750V ACV MEA rms specifica 025% of range	multiplied by tents. % of Read 0.05 0.07 SUREMENT ations apply from the for 50kHz-1 for 200kHz-1	the ratio (DC/ ing om 10% to 10 00kHz, 0.05% MHz.	AC rms). App % of Range 0.1 0.01 0% of range % of range fo	plies to rms , for 20Hz- or 100kHz-	HIGH CRE Applies to rn CREST FACT ADDITIONAL	EST FACTOR ns measuremen OR: . ERROR:	ADDITION ts. 1 – 2 0	NAL ERROR 2 – 3 3 0.1 (. ±(% of r - 4 4 0.2 (- 5 0.4
additional and average R. 2000 2V, 20 AVERAGE	uncertainty, ge measurem ANGE mV, 20V 00V, 750V ACV MEA rms specifica 025% of range	multiplied by tents. % of Read 0.05 0.07 SUREMENT ations apply from the for 50kHz-1 for 200kHz-1	the ratio (DC/ ing om 10% to 10 00kHz, 0.05% MHz.	AC rms). App % of Range 0.1 0.01 0% of range % of range fo	plies to rms , for 20Hz- or 100kHz-	HIGH CRE Applies to rn CREST FACT	EST FACTOR ns measuremen OR: . ERROR:	ADDITION ts. 1 – 2 0	NAL ERROR 2 - 3	±(% of r - 4 4 0.2 (- 5 0.4 ±5°C
additional and average R 2000 2V, 20 AVERAGE Normal mode 1MHz. Add 0. 200kHz, and 0	uncertainty, ge measurem ANGE mV, 20V 00V, 750V ACV MEA rms specifica 025% of range VALUE M 20Hz-	multiplied by lents. % of Read 0.05 0.07 SUREMENT ations apply fr te for 50kHz-1 for 200kHz-1 EASUREME	the ratio (DC/ ing of the state	AC rms). Apply of Range 0.1 0.01 0% of range for range f	, for 20Hz- r 100kHz- PEAK ACCURA	HIGH CRE Applies to rn CREST FACT ADDITIONAL ACY, ±(% of re	EST FACTOR as measuremen OR: ERROR: ading+% of rar	ADDITION ts. 1 - 2 0 age), 90 Days Hz- 750kH	NAL ERROR 2 – 3	±(% of r -4 4 0.2 (Years, Tcal ATURE COEl ding+% of r	- 5).4 ±5°C FFICIENT
additional and average R 2000 2V, 2t AVERAGE Normal mode 1MHz. Add 0. 200kHz, and 0	uncertainty, ge measurem ANGE mV, 20V 00V, 750V ACV MEA rms specifica 025% of range 0.5% of range VALUE M 20Hz- 1kHz ⁹	multiplied by lents. % of Read 0.05 0.07 SUREMENT Itions apply fre for 50kHz-1 for 200kHz-1 EASUREME 1kHz- 10kHz-	the ratio (DC/ ing	AC rms). Apple AC rms	, for 20Hz- or 100kHz- PEAK ACCURA 50kHz- 100kHz	HIGH CRE Applies to rm CREST FACT ADDITIONAL ACY, ±(% of re 100kHz- 36 300kHz 56	ST FACTOR as measuremen OR: ERROR: ading+% of rar okHz- 500k 00kHz- 750l	ADDITION ts. 1 - 2 0 nge), 90 Days Hz- 750kH	NAL ERROR 2 - 3	±(% of r -4 4 0.2 (Years, Tcal ATURE COEl ading+% of l utside Tcal ±	- 5 0.4 ±5°C FFICIENT range)/°C
additional and average R 2000 2V, 20 AVERAGE Normal mode 1MHz. Add 0. 200kHz, and 0	uncertainty, ge measurem ANGE mV, 20V 00V, 750V ACV MEA rms specifica 025% of range VALUE M 20Hz-	multiplied by lents. % of Read 0.05 0.07 SUREMENT ations apply free for 50kHz-1 for 200kHz-1 EASUREME 1kHz- 10kHz 7 0.09+0.7	the ratio (DC/ ing of the state	AC rms). Apply of Range 0.1 0.01 0% of range for range f	, for 20Hz- r 100kHz- PEAK ACCURA	ACY, ±(% of re 100kHz- 300kHz 1.0+0.7 2	EST FACTOR as measuremen OR: ERROR: ading+% of rar	ADDITION ts. 1 - 2 0 age), 90 Days Hz- 750kH kHz 1MH 0.7 9+0.7	NAL ERROR 2 – 3	±(% of r -4 4 0.2 (Years, Tcal ATURE COEl ding+% of r	- 5 0.4 ±5°C FFICIENT range)/°C -5°C
additional and average R 2000 2V, 2t AVERAGE Normal mode 1MHz. Add 0. 200kHz, and 0. ACV PEAK RANGE 200 mV 2 V 20 V	uncertainty, ge measurem ANGE mV, 20V 00V, 750V ACV MEA rms specifica 025% of range 0.5% of range VALUE M 20Hz- 1kHz9 0.08+0.7 0.08+0.3 0.1 +0.7	multiplied by lents. % of Read 0.05 0.07 SUREMENT ations apply fr for 200kHz-1 for 200kHz-1 EASUREME 1kHz- 10kHz 7 0.09+0.7 8 0.09+0.3 0.11+0.7	om 10% to 10 .00kHz, 0.05% MHz. NT ¹⁰ 10kHz- 30kHz 0.1 +0.7 0.1 +0.3 0.14+0.7	AC rms). Apple App	plies to rms , for 20Hz- pr 100kHz- PEAK ACCURA 50kHz- 100kHz 0.25+0.7 0.25+0.3 0.25+0.7	HIGH CRE Applies to rm CREST FACT ADDITIONAL ACY, ±(% of re 100kHz- 30 300kHz 50 1.0+0.7 2 1.0+0.3 2 1.0+0.7 2	ST FACTOR as measuremen OR: ERROR: ading+% of rar O0kHz 7500 00kHz 55+0.7 5.5+ .5+0.3 5.5+ .5+0.7 5.5+	ADDITION ts. 1 - 2 0 nge), 90 Days Hz- 750kH Hz 1MH 0.7 9+0.7 0.3 9+0.3 0.7 9+0.7	NAL ERROR 2 - 3	±(% of r -4 4 0.2 (Years, TCAL ATURE COEl dding+% of t utside TCAL ± 0.002 + 0.03 0.002 + 0.03 0.004 + 0.03	- 5 0.4 ±5°C FFICIENT range)/°C 3 3 3
additional and average R 2000 2V, 20 AVERAGE Normal mode 1MHz. Add 0. 200kHz, and 0 ACV PEAK RANGE 200 mV 2 V	uncertainty, ge measurem ANGE mV, 20V 00V, 750V ACV MEA rms specifica 025% of range 0.5% of range VALUE M 20Hz-1kHz9 0.08+0.5 0.1 +0.7 4 0.1 +0.5	multiplied by lents. % of Read 0.05 0.07 SUREMENT Itions apply free for 50kHz-1 for 200kHz-1 EASUREME 1kHz- 10kHz 7 0.09+0.7 8 0.09+0.3 0.11+0.7 8 0.11+0.3	om 10% to 10 00kHz, 0.059 MHz. NT ¹⁰ 10kHz- 30kHz 0.1 +0.7 0.1 +0.3	% of Range 0.1 0.01 0% of range % of range for	plies to rms , for 20Hz- pr 100kHz- PEAK ACCURA 50kHz- 100kHz 0.25+0.7 0.25+0.3	HIGH CRE Applies to rm CREST FACT ADDITIONAL ACY, ±(% of re 100kHz- 30 300kHz 50 1.0+0.7 2 1.0+0.3 2 1.0+0.7 2	ST FACTOR as measuremen OR: ERROR: ading+% of rar O0kHz 7500 00kHz 55+0.7 5.5+ .5+0.3 5.5+ .5+0.7 5.5+	ADDITION ts. 1 - 2 0 age), 90 Days Hz- 750kH kHz 1MH 0.7 9+0.3	NAL ERROR 2 - 3	±(% of r - 4	- 5).4 ±5°C FFICIENT range)/°C :5°C 3 3 3

DEFAULT MEASUREMENT RESOLUTION: 4 digits.

NON-REPETITIVE PEAK: 10% of range per μs typical slew rate for single spikes. PEAK WIDTH: Specifications apply for all peaks ${\ge}1\mu s.$

PEAK MEASUREMENT WINDOW: 100ms per reading.

MAXIMUM INPUT: ± 1100 V peak, 2×10^7 V • Hz (for inputs above 20V).

AC VOLTS (cont'd)

SETTLING CHARACTERISTICS:

Normal Mode (rms, avg.) <300ms to 1% of step change

<450ms to 0.1% of step change

<500ms to 0.01% of step change

Low Frequency Mode (rms) <5s to 0.1% of final value COMMON MODE REJECTION: For $1k\Omega$ imbalance in either lead: >60dB for line frequency ±0.1%.

MAXIMUM VOLT • Hz PRODUCT: 2 × 107V • Hz (for inputs above 20V). AUTORANGING: Autoranges up at 105% of range, down at 10% of range.

AC VOLTS NOTES

- 1. Specifications apply for sinewave input, AC + DC coupling, 1 power line cycle, digital filter off, following 55 minute warm-up.
- 2. Temperature coefficient applies to rms or average readings. For frequencies above 100kHz, add 0.01% of reading/°C to temperature coefficient.
- 3. For 1% to 5% of range below 750V range, and for 1% to 7% of 750V range, add 0.01% to range uncertainty. For inputs from 200kHz to 2MHz, specifications apply above 10% of
- 4. Add 0.001% of reading × (V_{IN}/100V)² additional uncertainty above 100V rms.
- 5. Typical values.
- 6. For DELAY=0, digital filter off, display off (or display in "hold" mode). Internal Trigger, Normal mode. See Operating Speed section for additional detail. Aperture is reciprocal of line frequency. These rates are for 60Hz and (50Hz). Applies for rms and average mode. Low frequency mode rate is typically 0.2 readings per second.
- 7. For overrange readings 200-300% of range, add 0.1% of reading. For 300-400% of range, add 0.2% of reading.
- 8. In burst mode, display off. Burst mode requires Auto Zero refresh (by changing resolution or measurement function) once every 24 hours.
- 9. AC peak specifications assume AC + DC coupling for frequencies below 200Hz.
- 10. Specifications apply for 10 reading digital filter. If no filter is used, add 0.25% of range typical uncertainty
- 11. Subject to peak input voltage specification.

OHMS

TWO-WIRE AND FOUR-WIRE OHMS (2W and 4W Ohms Functions)13

RANGE	FULL SCALE	RESOLUTION	DEFAULT RESOLUTION	CURRENT ¹ SOURCE	OPEN CIRCUIT ¹²	MAXIMUM LEAD RESISTANCE ²	MAXIMUM OFFSET COMPENSATION ³	TEMPERATURE COEFFICIENT ±(ppm of reading + ppm of range)/°C Outside TCAL ±5°
20 Ω	21.000000	1 μΩ	10 μΩ	9.2 mA	5 V	1.7 Ω	±0.2 V	8 + 1.5
200 Ω	210.00000	10 μΩ	100 μΩ	0.98 mA	5 V	12 Ω	±0.2 V	4 + 1.5
2 kΩ	2100.0000	100 μΩ	$1 \text{ m}\Omega$	0.98 mA	5 V	100 Ω	-0.2 V to +2 V	3.0 + 0.2
20 kΩ	21.000000	$1 \text{ m}\Omega$	$10 \text{ m}\Omega$	89 μΑ	5 V	1.5 kΩ	-0.2 V to +2 V	4 + 0.2
200 kΩ	210.00000	$10 \text{ m}\Omega$	$100 \text{ m}\Omega$	7 μA	5 V	1.5 kΩ		11 + 0.2
$2 M\Omega^4$	2.1000000	$100 \text{ m}\Omega$	1 Ω	770 nA	5 V	1.5 kΩ		25 + 0.2
$20 \mathrm{M}\Omega$ ⁴	21.000000	1 Ω	10 Ω	70 nA	5 V	1.5 kΩ		250 + 0.2
$200 \mathrm{M}\Omega$ ⁴	210.00000	10 Ω	100 Ω	4.4 nA	5 V	1.5 kΩ		4000 + 10
1 GΩ ⁴	1.0500000	100 Ω	1 kΩ	4.4 nA	5 V	1.5 kΩ		4000 + 10

RESISTANCE	ACCURAC	CY5 ±(ppm	of reading + p	pm of range)
RANGE	24 Hours ⁶	90 Days ⁷	1 Year ⁷	2 Years ⁷
20 Ω	29 + 7	52 + 7	72 + 7	110 + 7
200 Ω	24 + 7	36 + 7	56 + 7	90 + 7
2 kΩ	22 + 4	33 + 4	50 + 4	80 + 4.5
20 kΩ	19 + 4	32 + 4	50 + 4	80 + 4.5
200 kΩ	20 + 4.5	72 + 4.5	90 + 4.5	130 + 5
$2~\mathrm{M}\Omega$ 4	50 + 4.5	110 + 4.5	160 + 4.5	230 + 5
$20~\mathrm{M}\Omega$ ⁴	160 + 4.5	560 + 4.5	900 + 4.5	1100 + 5
$200~\mathrm{M}\Omega$ ⁴	3000 + 100	10000 + 100	20000 + 100	30000 + 100
1 GΩ ⁴	9000 + 100	20000 + 100	40000 + 100	60000 + 100

RESISTANCE UNCERTAINTY = \pm [(ppm of reading) × (measured value) + (ppm of range) × (range used)] / 1,000,000.

% ACCURACY = (ppm accuracy) / 10,000.

1PPM OF RANGE = 2 counts for ranges up to $200M\Omega$ and 1 count on $1G\Omega$ range at 61/2 digits.

2-WIRE ACCURACY ⁷ ±(ppn	n of range)		
RANGE	20 Ω	200 Ω	$2\;k\Omega$
ADDITIONAL UNCERTAINTY (inside Tcal ± 5°C)	300 ppm	30 ppm	3 ppm
TEMPERATURE COEFFICIENT (outside Tcal ±5°C)	70ppm/°C	7ppm/°C	0.7ppm/°C

SPEED AND	ACCURACY ⁹	90 Days	
		ACCURACY	
	±(ppm of reading+p	pm of range+ppm of	
	1PLC	0.1PLC ¹¹	0.01PLC ^{8,11}
RANGE	DFILT Off	DFILT Off	DFILT Off
20 Ω	52+ 7+0.6	52+ 30+10	110+200+ 35
200 Ω	36+ 7+0.6	36+ 30+10	110+200+ 35
2 kΩ	33+ 4+0.2	33+ 24+ 1	130+230+ 5
20 kΩ	32+4+0.2	32 + 24 + 2	130+230+ 5
200 kΩ	72+4.5+0.5	72+ 25+ 4	150+300+ 10
$2 M\Omega$ 4	110+ 4.5+ 2	110+ 25+15	150+300+150
$20~\mathrm{M}\Omega$ 4	560+ 4.5+ 5	560+ 30+20	560+300+150
200 M Ω ⁴	10,000+100+40	10,000+120+80	10,000+700+250

20,000+100+40 PLC = Power Line Cycles. DFILT = Digital Filter.

CREED AND ACCURACYO

1 GΩ 4

SETTLING CHARACTERISTICS: For first reading following step change, add the total 90-day measurement error for the present range. Pre-programmed settling delay times are for <200pF external circuit capacitance. For 200M Ω and $1G\Omega$ ranges, add total 1 year errors for first reading following step change. Reading settling times are affected by source impedance and cable dielectric absorption characteristics.

20,000+120+80

OHMS MEASUREMENT METHOD: Constant current.

OFFSET COMPENSATION: Available on $20\Omega - 20k\Omega$ ranges.

OHMS VOLTAGE DROP MEASUREMENT: Available as a multiple display. AUTORANGING: Autoranges up at 105% of range, down at 10% of range.

Rev. G

20,000+700+250

2-WIRE RESISTANCE READING RATES^{10,12} 20Ω , 200Ω , $2k\Omega$, and $20k\Omega$ Ranges

							READINGS/S	ECOND WITH
MEASUREMENT		DEFAULT	READINGS/SECO	ND TO MEMORY	READINGS/SECO	ND TO IEEE-488	TIME STAMP	TO IEEE-488
APERTURE	BITS	DIGITS	Auto Zero Off	Auto Zero On	Auto Zero Off	Auto Zero On	Auto Zero Off	Auto Zero On
167 ms (200 ms)	28	71/2	6 (5.1)	2 (1.7)	5 (4)	2 (1.6)	5 (4)	2 (1.6)
33.4 ms (40 ms)	26	71/2	30 (25)	8 (7.1)	28 (23)	8 (6.8)	27 (22)	8 (6.7)
16.7 ms (20 ms)	25	61/2	58 (48)	40 (34)	53 (45)	37 (32)	49 (41)	35 (31)
3.34 ms (4 ms)	22	61/2	219 (189)	109 (97)	197 (162)	97 (87)	140 (129)	79 (74)
1.67 ms (2 ms)	21	51/2	300 (300)	126 (118)	248 (245)	112 (108)	164 (163)	89 (88)
334 μs (400 μs)	19	51/2	300 (300)	130 (130)	249 (249)	114 (114)	165 (165)	91 (91)
167 μs (167 μs)	16	41/2	421 (421)	135 (135)	306 (306)	114 (114)	189 (189)	92 (92)
167 μs (167 μs)	16	41/2	2000 (2000)		2000(2000)			
	APERTURE 167 ms (200 ms) 33.4 ms (40 ms) 16.7 ms (20 ms) 3.34 ms (4 ms) 1.67 ms (2 ms) 334 μs (400 μs) 167 μs (167 μs)	APERTURE BITS 167 ms (200 ms) 28 33.4 ms (40 ms) 26 16.7 ms (20 ms) 25 3.34 ms (4 ms) 22 1.67 ms (2 ms) 21 334 μs (400 μs) 19 167 μs (167 μs) 16	APERTURE BITS DIGITS 167 ms (200 ms) 28 7½ 33.4 ms (40 ms) 26 7½ 16.7 ms (20 ms) 25 6½ 3.34 ms (4 ms) 22 6½ 1.67 ms (2 ms) 21 5½ 334 μs (400 μs) 19 5½ 167 μs (167 μs) 16 4½	APERTURE BITS DIGITS Auto Zero Off 167 ms (200 ms) 28 7½ 6 (5.1) 33.4 ms (40 ms) 26 7½ 30 (25) 16.7 ms (20 ms) 25 6½ 58 (48) 3.34 ms (4 ms) 22 6½ 219 (189) 1.67 ms (2 ms) 21 5½ 300 (300) 334 μs (400 μs) 19 5½ 300 (300) 167 μs (167 μs) 16 4½ 421 (421)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MEASUREMENT APERTURE DEFAULT BITS READINGS/SECOND TO MEMORY Auto Zero Off READINGS/SECOND TO IEEE-488 Auto Zero Off TIME STAMP Auto Zero Off TIME STAMP Auto Zero Off 167 ms (200 ms) 28 7½ 6 (5.1) 2 (1.7) 5 (4) 2 (1.6) 5 (4) 33.4 ms (40 ms) 26 7½ 30 (25) 8 (7.1) 28 (23) 8 (6.8) 27 (22) 16.7 ms (20 ms) 25 6½ 58 (48) 40 (34) 53 (45) 37 (32) 49 (41) 3.34 ms (4 ms) 22 6½ 219 (189) 109 (97) 197 (162) 97 (87) 140 (129) 1.67 ms (2 ms) 21 5½ 300 (300) 126 (118) 248 (245) 112 (108) 164 (163) 334 μs (400 μs) 19 5½ 300 (300) 130 (130) 249 (249) 114 (114) 165 (165) 167 μs (167 μs) 16 4½ 421 (421) 135 (135) 306 (306) 114 (114) 189 (189)

2-WIRE RESISTANCE READING RATES^{10,12} 20M Ω Range

NPLC	MEASUREMENT APERTURE	BITS	DEFAULT DIGITS		,	OND TO A		TIME	STAMP	ECOND W TO IEEE Auto Ze	-488
10	167 ms (200 ms)	28	71/2	6	(5.1)	1	(0.8)	2	(1.8)	1	(0.8)
2	33.4 ms (40 ms)	26	71/2	30	(25)	1	(0.8)	16(14.5)	1	(0.8)
1	16.7 ms (20 ms)	25	$6^{1/2}$	58	(48)	4	(3.8)	25	(22)	4	(3.5)
0.1^{11}	1.67 ms (2 ms)	21	$5^{1/2}$	300	(296)	5	(5)	43	(39)	5	(4.7)
0.02^{11}	334 µs (400 µs)	19	$5^{1/2}$	300	(300)	5	(5)	43	(43)	5	(5)
0.01^{11}	167 μs (167 μs)	16	41/2	412	(412)	5	(5)	43	(43)	5	(5)

4-WIRE RESISTANCE READING RATES^{10,12} Any Range

NPLC	MEASUREMENT APERTURE	BITS	DEFAULT DIGITS	RÉADINGS or READINGS WITH TIME STAMP/SECOND TO MEMORY or IEEE-488, AUTO ZERO ON Offset Comp. Off Offset Comp. On
10	167 ms (200 ms)	28	71/2	2 (1.6) 0.6 (0.5)
2	33.4 ms (40 ms)	26	71/2	7 (6.1) 2 (1.6)
1	16.7 ms (20 ms)	25	61/2	12 (11.6) 3 (3.7)
0.1^{11}	1.67 ms (2 ms)	21	51/2	20 (20) 6 (6)
0.01^{11}	167 μs (167 μs)	16	41/2	21 (21) 7 (7)

OHMS NOTES

- 1. Current source is typically ±9% absolute accuracy.
- 2. Total of measured value and lead resistance cannot exceed full scale.
- 3. Maximum offset compensation plus source current times measured resistance must be less than source current times resistance range selected.
- 5. Specifications are for 1 power line cycle, 10 reading digital filter, Auto Zero on, 4-wire mode, offset compensation on (for 20Ω to $20k\Omega$ ranges).
- 6. For $T_{CAL} \pm 1^{\circ}C$, following 55 minute warm-up. T_{CAL} is ambient temperature at calibration (23°C at the factory).
- 7. For Tcal ±5°C, following 55-minute warm-up. Specifications include traceability to US
- $8.\ In burst mode, display of f.\ Burst mode\ requires\ Auto\ Zero\ refresh\ (by\ changing\ resolution$ or measurement function) once every 24 hours.
- 9. For TCAL ±5°C, 90-day accuracy, 1-year and 2-year accuracy can be found by applying the same speed accuracy ppm changes to the 1-year or 2-year base accuracy.
- 10. For DELAY=0, digital filter off, internal trigger, display off. Aperture is reciprocal of line frequency. These rates are for 60Hz and (50Hz). Speed for $200 k\Omega$ range is typically 100 slower than $20k\Omega$ range; speed for $2M\Omega$ range is typically at times faster than $20M\Omega$ range; speed for $1G\Omega$ range is typically 30%-50% as fast as $20M\Omega$ range. See Operating Speed section for additional detail.
- 11. Ohms measurements at rates lower than 1 power line cycle are subject to potential noise pickup. Care must be taken to provide adequate shielding.
- 12. Typical values.
- 13. When measuring resistance of inductive loads, the inductance of that load must be 10mH

DC AMPS

DCI INPUT CHARACTERISTICS AND ACCURACY4

DC:	0. 0		THE TIECE						
	FULL		DEFAULT	MAXIMUM BURDEN	±(pp	ACCU om of reading	TEMPERATURE COEFFICIENT ±(ppm of reading + ppm of range)/°C		
RANGE	SCALE	RESOLUTION	RESOLUTION	VOLTAGE ⁶	24 Hours ²	90 Days ³	1 Year ³	2 Years ³	Outside TCAL ±5°C
200 μA	210.00000	10 pA	100 pA	0.25 V	63 + 25	300 + 25	500 + 25	1350 + 25	58 + 7
2 mA	2.1000000	100 pA	1 nA	0.31 V	64 + 20	300 + 20	400 + 20	750 + 20	58 + 5
20 mA	21.000000	1 nA	10 nA	0.4 V	65 + 20	300 + 20	400 + 20	750 + 20	58 + 5
200 mA	210.00000	10 nA	100 nA	0.5 V	96 + 20	300 + 20	500 + 20	750 + 20	58 + 5
2 A	2.1000000	100 nA	1 μΑ	1.5 V	500 + 20	600 + 20	900 + 20	1350 + 20	58 + 5

DC CURRENT UNCERTAINTY = ±[(ppm reading)×(measured value) + (ppm of range)×(range used)] / 1,000,000.

% ACCURACY = (ppm accuracy) / 10,000.

10PPM OF RANGE = 20 counts at 61/2 digits.

DCI READING RATES^{5,9}

NPLC	MEASUREMENT APERTURE	BITS	DEFAULT DIGITS		GS/SECO ero Off		MEMORY ero On		GS/SECO Zero Off) IEEE-488 Zero On	TIME	DINGS/SI STAMP Zero Off	TO II	EE-48	8
10	167 ms (200 ms)	28	$7^{1/2}$	6	(5.1)	2	(1.7)	6	(4.8)	2	(1.6)	6	(4.8)	2	(1.6)	
2	33.4 ms (40 ms)	26	71/2	30	(24)	10	(8.2)	28	(23)	9	(7.8)	27	(22)	9	(7.7)	
1	16.7 ms (20 ms)	25	$6^{1/2}$	57	(48)	45	(38)	53	(45)	41	(35)	48	(41)	40	(32)	
0.2	3.34 ms (4 ms)	22	$6^{1/2}$	217	(195)	122	(111)	186	(168)	109	(98)	135	(125)	88	(85)	
0.1	1.67 ms (2 ms)	21	$5^{1/2}$	279	(279)	144	(144)	234	(229)	123	(123)	158	(156)	99	(98)	
0.02	334 μs (400 μs)	19	$5^{1/2}$	279	(279)	148	(148)	234	(234)	130	(130)	158	(158)	101	(101)	
0.01	167 μs (167 μs)	16	$4^{1/2}$	298	(298)	150	(150)	245	(245)	132	(132)	164	(164)	102	(102)	
0.01^{7}	167 μs (167 μs)	16	41/2	2000 (2000)			2000	(2000)							Н۷

90 Days SPEED AND ACCURACY8

		ACCURACY	
	±(ppm of reading+p	opm of range+ppm o	of range rms noise9)
	1PLC	0.1PLC	0.01PLC ⁷
RANGE	DFILT Off	DFILT Off	DFILT Off
200 μΑ	300+25+0.3	300+50+8	300+200+80
2 mA	300+20+0.3	300+45+8	300+200+80
20 mA	300+20+0.3	300+45+8	300+200+80
200 mA	300+20+0.3	300+45+8	300+200+80
2 A	600+20+0.3	600+45+8	600+200+80

PLC = Power Line Cycle. DFILT = Digital Filter.

SETTLING CHARACTERISTICS: <500µs to 50ppm of step size. Reading settling times are affected by source impedance and cable dielectric absorption characteristics. Add 50ppm of range for first reading after range change.

MAXIMUM ALLOWABLE INPUT: 2.1A, 250V.

OVERLOAD PROTECTION: 2A fuse (250V), accessible from front (for front input) and rear (for rear input).

AUTORANGING: Autoranges up at 105% of range, down at 10% of range.

DC AMPS NOTES

- 1. Specifications are for 1 power line cycle, Auto Zero on, 10 reading digital filter.
- 2. For Tcal ± 1°C, following 55 minute warm-up.
- 3. For $T_{CAL} \pm 5^{\circ}C$, following 55 minute warm-up. Specifications include traceability to US
- 4. Add 50 ppm of range for current above 0.5A for self heating.
- 5. For DELAY=0, digital filter off, display off. Internal trigger. Aperture is reciprocal of line frequency. These rates are for 60Hz and (50Hz). See Operating Speed section for additional detail.
- 6. Actual maximum voltage burden = (maximum voltage burden) × (Imeasured/Ifull scale).
- 7. In burst mode, display off. Burst mode requires Auto Zero refresh (by changing resolution or measurement function) once every 24 hours.
- 8. For Tcal ±5°C, 90-day accuracy. 1-year and 2-year accuracy can be found by applying the same speed accuracy ppm changes to the 1-year or 2-year base accuracy.
- 9. Typical values.

DC IN-CIRCUIT CURRENT

The DC in-circuit current measurement function allows a user to measure the current through a wire or a circuit board trace without breaking the circuit. When the In-Circuit Current Measurement function is selected, the 2001 will first perform a 4-wire resistance measurement, then a voltage measurement, and will display the calculated current.

TYPICAL RANGES:

Current: Trace Resistance:

100µA to 12A. $1m\Omega$ to 10Ω typical.

Voltage:

±200mV max. across trace.

Speed:

4 measurements/second at 1 power line cycle.

Accuracy:

±(5% + 2 counts). For 1 power line cycle, Auto Zero on, 10 reading digital filter, Tcal±5°C, after being properly zeroed.

90 days, 1 year or 2 years.

MEASUREMENT RANGE CHART

TEAADED A TIJDE

AC AMPS

AC magnitude: RMS or Average.

ACI INPUT CHARACTERISTICS

RMS RANGE	PEAK INPUT	FULL SCALE RMS	RESOLUTION	DEFAULT RESOLUTION	MAXIMUM BURDEN VOLTAGE ⁵	COEFFICIENT ±(% of reading + % of range)/°C Outside Tcal ±5°C
200 μΑ	1 mA	210.0000	100 pA	1 nA	0.25 V	0.01 + 0.001
2 mA	10 mA	2.100000	1 nA	10 nA	0.31 V	0.01 + 0.001
20 mA	100 mA	21.00000	10 nA	100 nA	0.4 V	0.01 + 0.001
200 mA	1 A	210.0000	100 nA	1 μΑ	0.5 V	0.01 + 0.001
2 A	2 A	2.100000	1 μΑ	10 μA	1.5 V	0.01 + 0.001

ACI ACCURACY^{1,2} 90 Days, 1 Year or 2 Years, TcAL ±5°C, for 5% to 100% of range, ±(% of reading + % of range)

RANGE	20Hz-50Hz	50Hz-200Hz	200Hz-1kHz	1kHz-10kHz	10kHz-30kHz³	30kHz-50kHz ³	50kHz-100kHz ³
200 μΑ	0.35 + 0.015	0.2 + 0.015	0.4 + 0.015	0.5 + 0.015			
2 mA	0.3 + 0.015	0.15 + 0.015	0.12 + 0.015	0.12 + 0.015	0.25 + 0.015	0.3 + 0.015	0.5 + 0.015
20 mA	0.3 + 0.015	0.15 + 0.015	0.12 + 0.015	0.12 + 0.015	0.25 + 0.015	0.3 + 0.015	0.5 + 0.015
200 mA	0.3 + 0.015	0.15 + 0.015	0.12 + 0.015	0.15 + 0.015	0.5 + 0.015	1 + 0.015	3 + 0.015
2 A	0.35 + 0.015	0.2 + 0.015	0.3 + 0.015	0.45 + 0.015	1.5 + 0.015	4 + 0.015	

AC CURRENT UNCERTAINTY = \pm [(% of reading) × (measured value) + (% of range) × (range used)] / 100.

PPM ACCURACY = $(\% \text{ accuracy}) \times 10,000.$ 0.015% OF RANGE = 30 counts at $5\frac{1}{2}$ digits.

AC COUPLING: For AC only coupling, add the following % of reading:

20-50Hz 50-100Hz 100-200Hz 0.55 0.09 0.015 rms, Average

AC+DC COUPLING: For DC>20% of AC rms voltage, apply the following additional uncertainty, multiplied by the ratio (DC/AC rms).

> % of Range % of Reading

rms, Average 0.05 0.1

ACI READING RATES^{3,4}

NIDLC	MEASUREMENT	DITC			,		MEMORY		,		IEEE-488	TIME	STAMP	TO IE	EE-488
NPLC	APERTURE	BITS	DIGITS	Auto A	Zero Off	Auto Z	ero On	Auto .	Zero Off	Auto 2	Zero On	Auto A	Zero Off	Auto Z	ero On
10	167 ms (200 ms)	28	61/2	6	(5.1)	2	(1.7)	6	(4.9)	2	(1.6)	6	(4.8)	2	(1.6)
2	33.4 ms (40 ms)	26	$5^{1/2}$	30	(25)	9	(7.9)	28	(23)	9	(7.6)	27	(22)	9	(7.5)
1	16.7 ms (20 ms)	25	$5^{1/2}$	57	(48)	39	(35)	53	(45)	37	(33)	49	(41)	34	(30)
0.1	1.67 ms (2 ms)	21	$5^{1/2}$	157	(136)	70	(70)	123	(123)	62	(62)	107	(107)	56	(53)
0.01	167 μs (167 μs)	16	41/2	156	(136)	70	(70)	140	(140)	63	(63)	113	(113)	56	(56)
0.01^{6}	167 μs (167 μs)	16	41/2	2000	(2000)			2000	(2000)						

SETTLING CHARACTERISTICS: <300ms to 1% of step change

<450ms to 0.1% of step change

<500ms to 0.01% of step change

AUTORANGING: Autoranges up at 105% of range, down at 10% of range.

HIGH CREST FACTOR ADDITIONAL ERROR ±(% of reading)

Applies to rms measurements.

CREST FACTOR 1 - 22 - 33 - 44 - 5ADDITIONAL ERROR 0.1 0.2 0.4

AVERAGE ACI MEASUREMENT

Rms specifications apply for 10% to 100% of range.

AC AMPS NOTES

- 1. Specifications apply for sinewave input, AC+DC coupling, 1 power line cycle, digital filter off, following 55 minute warm-up.
- 2. Add 0.005% of range uncertainty for current above 0.5A rms for self-heating.
- 3. Typical values.
- ${\bf 4.\,For\,DELAY=0,\,digital\,filter\,off,\,display\,off,\,internal\,trigger.\,Aperture\,is\,reciprocal\,of\,line}$ frequency. These rates are for 60Hz and (50Hz).
- 5. Actual maximum voltage burden = (maximum voltage burden) × (Imeasured/Ifull scale).
- 6. In burst mode, display off. Burst mode requires Auto Zero refresh (by changing resolution or measurement function) once every 24 hours.

FREQUENCY COUNTER

FREQUENCY/PERIOD INPUT CHARACTERISTICS AND ACCURACY 90 Days, 1 Year, or 2 Years									
	FREQUENCY RANGE ¹	PERIOD Range	DEFAULT RESOLUTION	MINIM 1Hz–1MHz	UM SIGNA 1–5MHz		MAXIMUM INPUT	TRIGGER Level	ACCURACY ±(% of reading)
AC Voltage Input AC Current Input	1Hz-15 MHz 1Hz- 1 MHz	67 ns – 1 s 1 μs – 1 s	5 digits 5 digits	60 mV 150 μA	60 mV	350 mV	1100 V pk¹ 1 A pk	0–600V 0–600mA	0.03 0.03

MEASUREMENT TECHNIQUE: Unique pulse count/time count at overflow.

TIME BASE: 7.68MHz ± 0.01%, 0°C to 55°C.

READING TIME: 420ms maximum.

TRIGGER LEVEL ADJUSTMENT: Trigger level is adjustable in 0.5% of range steps to ±60% of range in real-time using the up and down range buttons.

FREQUENCY RANGING: Autoranging from Hz to MHz.

FREQUENCY COUPLING: AC + DC or AC only.

FREQUENCY NOTES

1. Subject to 2 × 107V • Hz product (for inputs above 20V).

TEMPERATURE (RTD)

	RESO-				
RANGE	LUTION	1 Hour ²	90 Days	1 Year	2 Years
-100° to $+100^{\circ}$ C	0.001°C	±0.005°C	$\pm 0.05^{\circ}C$	±0.08°C	±0.12°C
-200° to $+630^{\circ}C$	0.001°C	$\pm 0.005^{\circ} C$	$\pm 0.12^{\circ}C$	±0.14°C	±0.18°C
-212° to $+180^{\circ}F$	$0.001^{\circ}\mathrm{F}$	±0.009°F	$\pm 0.09^{\circ}F$	$\pm 0.15^{\circ}F$	$\pm 0.22^{\circ}F$
-360° to $+1102^{\circ}$ F	0.001°F	±0.009°F	±0.15°F	±0.18°F	±0.33°F

RTD TYPE: 100Ω platinum; DIN 43 760 or IPTS-68, alpha 0.00385, 0.00390, 0.003916, or 0.00392, 4-wire.

MAXIMUM LEAD RESISTANCE (each lead): 12Ω (to achieve rated accuracy). SENSOR CURRENT: 1mA (pulsed).

COMMON MODE REJECTION: <0.005°C/V at DC, 50Hz, 60Hz and 400Hz, (100 Ω imbalance, LO driven).

TEMPERATURE COEFFICIENT: $\pm (0.0013\% + 0.005^{\circ}\text{C})/^{\circ}\text{C}$ or $\pm (0.0013\% + 0.01^{\circ}\text{F})/^{\circ}$ °C outside Tcal ±5°C.

RTD TEMPERATURE READING RATES¹ (2- or 4-Wire)

READINGS or	READINGS	WITH	TIME	STAMP/SECOND
	TO MEMO	RV or	IFFF_4	98

	TO MEMORY	or IEEE-488
NPLC	Auto Zero Off	Auto Zero On
10	1 (1)	1 (1)
2	5 (4.3)	4 (3.6)
1	7 (6.5)	6 (5.5)
0.1	12 (10.8)	9 (9)
0.01	12 (12)	10 (10)

TEMPERATURE (Thermocouple)

THERMO- COUPLE TYPE	RANGE	DEFAULT RESOLUTION	ACCURACY⁴
J	-200° to + 760° C	0.1°C	±0.5°C
K	-200° to +1372°C	0.1°C	±0.5°C
T	-200° to + 400° C	0.1°C	$\pm 0.5^{\circ} C$
E	-200° to $+1000^{\circ}$ C	0.1°C	±0.6°C
R	0° to +1768°C	1 °C	±3 °C
S	0° to +1768°C	1 °C	±3 °C
В	+350° to +1820°C	1 °C	±5 °C

TC TEMPERATURE READING RATES¹

					KEADINGS,	/SECOND
	READING	GS/SECOND	READING	S/SECOND	WITH TIM	E STAMP
	TO N	1EMORY	TO II	EE-488	TO IEE	E-488
	Auto	o Zero	Auto	Zero	Auto	Zero
NPLC	Off	On	Off	On	Off	On
10	6 (5.1)	2 (1.7)	4 (3.4)	2 (1.4)	4 (3.4)	2 (1.4)
2	30 (25)	9 (7.6)	28 (23)	9 (7.3)	27 (22)	8 (7.2)
1	57 (48)	43 (37)	53 (45)	40 (32)	49 (41)	37 (30)
0.1	139 (139)	95 (95)	126 (123)	85 (84)	99 (99)	72 (72)
0.01	177 (177)	98 (98)	156 (156)	87 (87)	119 (119)	73 (73)

TEMPERATURE NOTES

- 1. Typical speeds for Auto Zero on. For DELAY=0, digital filter off, display off, internal trigger. Rates are for 60Hz and (50Hz).
- 2. For ambient temperature $\pm 1^{\circ}$ C, measured temperature $\pm 10^{\circ}$ C, 10-reading digital filter.
- 3. Excluding probe errors. Tcal ±5°C.
- 4. Relative to external 0°C reference junction; exclusive of thermocouple errors. Junction temperature may be external. Applies for 90 days, 1 year or 2 years, Tcal ±5°C.

DEADINGS/SECOND

OPERATING SPEED

The following diagram illustrates the factors that determine a DMM's reading rate.

COMMAND RECEIVE AND INTERPRET SPEED

	FASTEST	TYPICAL	SLOWEST
Time per character	0.16 ms	0.28 ms	0.66 ms
Characters per second	6250	3751	1515
TYPICAL COMMAND TIME Command	ES	Receive and Interpret Time	Rate (per second)
SENSE1:VOLTAGE:AC:			
RESOLUTION MAXIMUM	1	9.4 ms	106
VOLT:AC:RES:MAX		4.1 ms	243
SENSE1:FUNC 'VOLT:AC	"	6.3 ms	158
RESISTANCE:RANGE:UF	PER 1E9	9.0 ms	111
STATUS:QUEUE:CLEAR		5.1 ms	196
STAT:QUE:CLE		3.1 ms	322
*TRG		1.2 ms	833

MEASUREMENT SPEED CHANGE TIMES^{1,2}

Typical delay before first reading after making a speed change.

FUNCTION	From	To	AUTO ZERO OFF Time	AUTO ZERO ON Time
DCV, DCI, ACI	Any	≤ 0.1 PLC	66 ms	44 ms
, ,	Any	1 PLC	190 ms	140 ms
	Any	10 PLC	1540 ms	1195 ms
ACV	Any	≤ 0.1 PLC	120 ms	100 ms
	Any	1 PLC	250 ms	197 ms
	Any	10 PLC	1600 ms	1250 ms
Ohms (2-wire)	Any	≤ 0.1 PLC	69 ms	57 ms
	Any	1 PLC	195 ms	170 ms
	Any	10 PLC	1540 ms	1370 ms
Ohms (4-wire)	Any	≤ 0.1 PLC	110 ms	46 ms
	Any	1 PLC	240 ms	165 ms
	Any	10 PLC	1590 ms	1370 ms
TC Temperature	Any	≤ 0.1 PLC	80 ms	55 ms
	Any	1 PLC	195 ms	170 ms
	Any	10 PLC	1545 ms	1370 ms

FUNCTION CHANGE SPEED¹

			Α	UTO	ZERO OFF	A	U TO Z	ERO ON
FROM Function	TO Function	Range(s)	TIME	E	RATE (per second)	TIM	IE.	RATE (per second)
Any	DCV	200mV, 2V	8.1 n	ns	120	36	ms	27
-		20V		ns	120		ms	110
		200V		ns	40	52	ms	19
		1000V	11 n	ns	160	10.2	ms	190
Any	ACV	Any	563 n	ns	1.8	563	ms	1.8
Any except ACI	DCI	200μA, 2mA, 20mA	4.5 n	ns	220		ms	190
		200mA, 2A	6.0 n		160		ms	150
ACI		Any	21.1 n	ns	45	22	ms	45
Any	ACI	Any	521 n	ns	1.9	521	ms	1.9
Any	Ohms (2-wire)	20Ω, 200Ω, 2kΩ, 20kΩ	6.0 n	ns	165	34	ms	29
		$200 \mathrm{k}\Omega$		ns	38	61	ms	16
		$2M\Omega$		ns	10.5	425	ms	2.4
		$20\mathrm{M}\Omega$		ns	4	690	ms	1.4
		200M Ω , 1G Ω	366 n	ns	3	5.5	ms	180
Any	Ohms (4-wire)	20Ω , 200Ω , $2k\Omega$, $20k\Omega$	12 n	ns	140	34.1	ms	29
·		$200 \mathrm{k}\Omega$	26 n	ns	38	60	ms	16
Any except ACI and Ohms	Frequency8	Any	61 n	ns	16	60	ms	17
ACI, Ohms (4-wire)	. ,	Any	79 n	ns	12	75	ms	13
Ohms (2-wire)		Any	418 n	ns	2	416	ms	2
Any	RTD Temp. (2-wire)	Any	6.0 n	ns	165	33	ms	30
·	RTD Temp. (4-wire)	Any	11.5 n	ns	150	37	ms	27
	TC Temp.	Any	8.0 n	ns	125	35	ms	28

RANGE CHANGE SPEED ¹		AUTO ZERO OFF		AUTO Z	ERO ON	
				RATE		RATE
FUNCTION	From	To	TIME	(per second)	TIME	(per second)
DCV	200mV, 2V	20V	4.5 ms	220	3.1 ms	190
	200V, 1000V	20V	8.0 ms	120	8.6 ms	110
	200mV, 2V, 20V	200mV, 2V, 20V	4.5 ms	220	36 ms	27
	200V, 1000V	200mV, 2V	8.0 ms	120	38 ms	26
	200mV, 2V, 20V	200V	24 ms	41	52 ms	19
	1000V	200V	9 ms	110	37 ms	27
	Any	1000V	11 ms	165	10.1 ms	190
ACV	Any	Any	563 ms	1.8	563 ms	1.8
DCI	Any	200µA, 2mA, 20mA	4.5 ms	220	5.2 ms	190
	•	200mA, 2A	6.0 ms	160	6.6 ms	150
ACI	Any	Any	525 ms	1.9	525 ms	1.9
Ohms (2-wire)	Any	20Ω, 200Ω, 2kΩ, 20kΩ	6.0 ms	160	34 ms	29
	Any	200kΩ	26 ms	38	66 ms	15
	Any	$2M\Omega$	95 ms	10	420 ms	2.3
	Any	$20 \mathrm{M}\Omega$	265 ms	3.7	690 ms	1.4
	Any	200MΩ, 1GΩ	366 ms	2.7	5.5 ms	180
Ohms (4-wire)	Any	20Ω , 200Ω , $2k\Omega$, $20k\Omega$	8 ms	160	34 ms	29
	Any	200kΩ	26 ms	38	66 ms	16

TRIGGER SPEED (External Trigger or Trigger-Link)

	Auto Zero On	Auto Zero Off
Trigger Latency: Trigger Jitter:	1.2 ms typical	2 μs ±0.5 μs

ENGINEERING UNIT CONVERSION SPEED

Included in reading times for multiple measurements; add to total time for single measurements only.

CONFICURATION	TIME	DATE (
CONFIGURATION	TIME	RATE (per second)
DCV	2.4 ms	416
DCV, Filter on	2.4 ms	416
DCV, Relative on	2.5 ms	400
DCV, Ratio on	3.7 ms	270
ACV	5.3 ms	188
ACV, Relative on	5.3 ms	188
ACV, Filter on	6.8 ms	147
ACV, dB	9.4 ms	106
ACV. dBm	17.3 ms	57

DISPLAY SPEED

Display updated at up to 20 times per second. Display update can be suspended by holding the display (press ENTER) or setting Display Enable Off from GPIB.

SINGLE FUNCTION SCAN SPEED4 (Internal Scanner)

MATH AND	LIMITS	CALCULA	ATION	SPEED ¹	

CALCULATION	NOMINAL TIME	NOMINAL RATE (per second)	MAXIMUM TIME
mX + b	0.35 ms	2850	0.44 ms
Percent	0.60 ms	1660	0.64 ms
Limits ⁶	0.35 ms	2850	0.37 ms
None	0.07 ms		0.08 ms

GPIB DATA FORMATTING TRANSMISSION TIME³

FORMAT	READIN ONL' Time		READINGS WITH TIME STAMP Time Rdg./s			
DREAL (Double precision real)	0.30 ms	3330	2.0 ms	500		
SREAL (Single precision real)	0.37 ms	2710	2.1 ms	475		
ASCII	3.9 ms	255	8.2 ms	120		

SHAGLE FORCHOR SCARA SILLED (Internal Scaliner)														
	DCV	(20V) ⁷		e Ohms $(\Omega)^7$		Ohms $(\Omega)^7$	Α	CV	Freau	encv	Tempe			TD re (2-Wire)
ТҮРЕ	Time per Chan.	Rate (Chan./ second)	Time per Chan.	Rate (Chan./ second)	•	Rate (Chan./ second)	Time per Chan.	Rate (Chan./ second)	Time per Chan.	Rate (Chan./ second)	Time per Chan.	Rate (Chan./ second)	Time per Chan.	Rate (Chan./ second)
Ratio or Delta ⁵ (2 channels)	4 ms	250	4.4 ms	230	18.5 ms	54								
Fast Scan (using solid state channels)	5.5 ms	181	7 ms	140			520 ms	1.9	958 ms	1	13.8 ms	72		
Normal Scan	10.3 ms	97	12.1 ms	80	21 ms	47	532 ms	1.8	974 ms	1	18 ms	55	95 ms	10

MIXED FUNCTION SCAN SPEED¹ (Internal Scanner)

SCAN CONFIGURATION (Channels)	Average Time/ Channel	Average Rate (Channel/s)
5 chan. DCV, 5 chan. 2wΩ	20 ms	50
3 DCV, 3 2wΩ, 4 TC	22 ms	45
5 2wRTD, 5 TC	60 ms	17
5 2wΩ, 5 2wRTD	60 ms	17
9 DCV, 1 ACV	73 ms	13
2 DCV, 1 ACV, 2 2wΩ, 1 4wΩ	122 ms	8
5 DCV, 5 Freq.	490 ms	2
3 DCV, 3 ACV, 2 $4w\Omega$	220 ms	5

OPERATING SPEED NOTES

- 1. With Display off, 1 power line cycle, autorange off, filter off, triggers halted. Display on may impact time by 3% worst case. To eliminate this impact press ENTER (hold) to lock out display from front panel.
- 2. Based on using 20V, 2kΩ, 200mA ranges.
- $3.\,\mathrm{Auto}$ Zero off, using $386\mathrm{SX}/16$ computer, average time for 1000 readings, byte order swapped, front panel disabled.
- 4. Typical times for 0.01 power line cycle, autorange off, Delay=0, 100 measurements into buffer.
- 5. Ratio and delta functions output one value for each pair of measurements.
- 6. Time to measure, evaluate limits, and set digital outputs are found by summing measurement time with limits calculation time.
- 7. Auto Zero off.
- 8. Based on 100kHz input frequency.

DELAY AND TIMER I

TIME STAMP

Resolution: 1us.

Accuracy: ±0.01% ±1us.

Maximum: 2,100,000.000 000 seconds (24 days, 20 hours).

DELAY TIME (Trigger edge to reading initiation)

Maximum: 999,999.999 seconds (11 days, 12 hours).

Resolution: 1ms. litter: ±1ms.

TIMER (Reading initiation to reading initiation)

Maximum: 999,999.999 seconds (11 days, 12 hours).

Resolution: 1ms. litter: +1ms.

NOTE: To find measurement speed, see each measurement section.

MAXIMUM INPUT LEVELS

	RATED INPUT ¹	OVERLOAD RECOVERY TIME		
HI to LO HI Sense to LO LO Sense to LO	±1100V pk ± 350V pk 250V rms ± 350V pk 250V rms	< 900 ms < 900 ms < 900 ms		
I Input to LO HI to Earth LO to Earth	2A, ± 250V (fused) ±1600V ± 500V	< 900 ms		

1. For voltages between other terminals, these ratings can be algebraically added.

IEEE-488 BUS IMPLEMENTATION

IMPLEMENTATION: IEEE-488.2. SCPI-1991.0.

MULTILINE COMMANDS: DCL, LLO, SDC, GET, GTL, UNT, UNL, SPE, SPD.

UNILINE COMMANDS: IFC. REN. EOI. SRQ. ATN.

INTERFACE COMMANDS: SH1, AH1, T5, TE0, L4, LE0, SR1, RL1, PP0, DC1,

DT1. C0. E1.

DIGITAL I/O

CONNECTOR TYPE: 8 pin "D" subminiature.

INPUT: One pin, TTL compatible.

OUTPUTS: Four pins. Open collector, 30V maximum pull-up voltage, 100mA maximum sink current, 10Ω output impedance.

CONTROL: Direct control by output or set real-time with limits.

GENERAL SPECIFICATIONS AND STANDARDS COMPLIANCE

POWER

Voltage: 90-134V and 180-250V, universal self-selecting.

Frequency: 50Hz, 60Hz, or 400Hz self-identifying.

Consumption: <55VA.

ENVIRONMENTAL

Operating Temperature: 0°C to 50 °C. Storage Temperature: -40 °C to 70 °C.

Humidity: 80% R.H., 0°C to 35°C, per MIL-T-28800E1 Para 4.5.5.1.2.

NORMAL CALIBRATION

Type: Software. No manual adjustments required.

Sources: 2 DC voltages (2V, 20V) and 2 resistances (19k and 1M). Different calibration source values are allowed. All other functions calibrated (adjusted) from these sources and a short circuit. No AC calibrator required for adjustment.

PHYSICAL

Case Dimensions: 90mm high \times 214mm wide \times 369mm deep (3½ in. \times 8½ in. × 14½ in.).

Working Dimensions: From front of case to rear including power cord and IEEE-488 connector: 15.0 inches.

Net Weight: <4.2kg (<9.2 lbs.). Shipping Weight: <9.1kg (<20lbs.).

STANDARDS

EMI/RFI: Conforms to VDE 0871B (per Vfg 1046/1984), IEC 801-2. Meets FCC part 15 Class B, CISPR-22 (EN55022).

Safety: Conforms to IEC348, CAN/CSA-C22.2. No. 231, MIL-T-28800E1. Designed to UL1244.

Reliability: MIL-T-28800E1.

Maintainability: MIL-T-28800E1.

MTTR: <90 minutes (includes disassembly and assembly, excludes recalibration). MTTR is Mean Time To Repair.

MTBF, Estimated: >75,000 hours (Bellcore method). MTBF is Mean Time Between Failure

MTTC: <20 minutes for normal calibration. <6 minutes for AC self-calibration. MTTC is Mean Time To Calibrate.

Process: MIL-STD 45662A and BS5750.

ACCESSORIES SUPPLIED

The unit is shipped with line cord, high performance modular test leads, user's manual, option slot cover, and full calibration data. A personal computer startup package is available free.

Note 1: For MIL-T-28800E, applies to Type III, Class 5, Style E.

EXTENDED MEMORY / NON-VOLATILE MEMORY OPTIONS

DATA STORAGE

SIZE 61/2-Digit				SETUP S	SETUP STORAGE		
MODEL	(Bytes)	41/2-Digit	w/Time Stamp	Type	Number	Type	
2001	8k	2,027	404	volatile	1	non-volatile	
2001/MEM1	32k	6,909	1,381	non-volatile	5	non-volatile	
2001/MEM2	128k	29.908	5.980	non-volatile	10	non-volatile	

These are the minimum sizes to expect.